BAI1 regulates spatial learning and synaptic plasticity in the hippocampus.

نویسندگان

  • Dan Zhu
  • Chenchen Li
  • Andrew M Swanson
  • Rosa M Villalba
  • Jidong Guo
  • Zhaobin Zhang
  • Shannon Matheny
  • Tatsuro Murakami
  • Jason R Stephenson
  • Sarah Daniel
  • Masaki Fukata
  • Randy A Hall
  • Jeffrey J Olson
  • Gretchen N Neigh
  • Yoland Smith
  • Donald G Rainnie
  • Erwin G Van Meir
چکیده

Synaptic plasticity is the ability of synapses to modulate the strength of neuronal connections; however, the molecular factors that regulate this feature are incompletely understood. Here, we demonstrated that mice lacking brain-specific angiogenesis inhibitor 1 (BAI1) have severe deficits in hippocampus-dependent spatial learning and memory that are accompanied by enhanced long-term potentiation (LTP), impaired long-term depression (LTD), and a thinning of the postsynaptic density (PSD) at hippocampal synapses. We showed that compared with WT animals, mice lacking Bai1 exhibit reduced protein levels of the canonical PSD component PSD-95 in the brain, which stems from protein destabilization. We determined that BAI1 prevents PSD-95 polyubiquitination and degradation through an interaction with murine double minute 2 (MDM2), the E3 ubiquitin ligase that regulates PSD-95 stability. Restoration of PSD-95 expression in hippocampal neurons in BAI1-deficient mice by viral gene therapy was sufficient to compensate for Bai1 loss and rescued deficits in synaptic plasticity. Together, our results reveal that interaction of BAI1 with MDM2 in the brain modulates PSD-95 levels and thereby regulates synaptic plasticity. Moreover, these results suggest that targeting this pathway has therapeutic potential for a variety of neurological disorders.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial Learning and Memory in Barnes Maze Test and Synaptic Potentiation in ‎Schaffer Collateral-CA1 Synapses of Dorsal Hippocampus in Freely Moving Rats

Introduction: Synaptic plasticity has been suggested as the primary physiological mechanism underlying memory formation. Many experimental approaches have been used to investigate whether the mechanisms underlying long-term potentiation (LTP) are activated during learning. Nevertheless, little evidence states that hippocampal-dependent learning triggers synaptic plasticity. In this study, we in...

متن کامل

Lavandula angustifolia extract improves deteriorated synaptic plasticity in an animal model of Alzheimer’s disease

Objective(s):Neurodegenerative Alzheimer’s disease (AD) is associated with profound deficits in synaptic transmission and synaptic plasticity. Long-term potentiation (LTP), an experimental form of synaptic plasticity, is intensively examined in hippocampus. In this study we evaluated the effect of aqueous extract of lavender (Lavandula angustifolia) on induction of LTP in the CA1 area of hippoc...

متن کامل

Behavioral and electrophysiological aspects of cognition in neonate rats lactated by morphine addicted mothers

Objective(s): In addition to genetic factors, environmental phenomena during postnatal age highly affect development and, in turn, function of the brain. The present work evaluates if morphine consumption during lactation period influences the spatial performances and synaptic plasticity in rats at neonatal period of age. Materials and Methods:</stron...

متن کامل

بررسی اثر تحمل دارویی ناشی از مصرف مزمن مرفین و سالیسیلات بر شکل پذیری سیناپسی

Background & Aim: Salicylates and opioids are widely used in chronic pain relief. Chronic use of these drugs reorganizes synaptic function, especially experience-dependent plasticity in brain regions. Therefore, in this study the effects of chronic administration of salicylate and morphine on synaptic plasticity were investigated. Methods: in this review, Elsevier, Science Direct, PubMed and G...

متن کامل

The effect of bilateral intrahippocampal injection of all–trans retinoic acid on spatial learning in adult male rats.

Introduction: Previous studies have shown that vitamin A and its derivatives such as retinoid and all-trans retinoic acid have a crucial role in memory, learning and synaptic plasticity. The receptors of vitamin A are seen in different parts of the brain such as hippocampus, where vitamin A has an important role in learning. In this study, the effect of intrahippocampal (CA1) injection of al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 125 4  شماره 

صفحات  -

تاریخ انتشار 2015